The PA200 was designed to be the most precise and flexible semi-automated test solution for wafers and substrates up to 200 mm. The PA200 gives you reliable probing and precise measurements on decreasing pad and feature sizes down to the submicron range. It is ideal for failure analysis (FA), RF and mm-wave applications up to 500 GHz, as well as for opto-engineering and MEMS tests.

To ensure maximum stability and precision, the PA200 relies on precisely machined components. The use of ground slides and ball-screw drives in closed-loop positioning with glass scales produce excellent performance. Based on your application needs, you can choose between vacuum, magnetic or dedicated high-frequency probe platens. In order to provide maximum flexibility, our modular design concept allows us to mount microscopes based on your needs. This gives you the freedom to upgrade your PA200 from a simple manual microscope stage to a fully programmable microscope with high magnification.

The powerful Velox™ probe station control software features easy on-screen navigation, wafer mapping, automation and seamless integration with analyzers and measurement software. It enables simple operation of motorized positioners and thermal systems. For a wide range of applications, the PA200 probe station powered by Velox software achieves high test efficiency.

FEATURES / BENEFITS

Flexibility	Ideal for FA, RF, opto-engineering and MEMS tests
	Large number of accessories available, e.g., laser cutters, probe card holders, ShieldEnclosure™, emission microscopes
	RF tests supported by wide range of probes and calibration tools, such as calibration tools and WinCal XE™ calibration software

Precision	Best position accuracy available on the market
	Ideal for small structures even down to submicron probing
	Highly stable mechanics

Ease of use	Unique and easy to operate Velox probe station control software
	Joystick controller with color display for full prober control (option)
	Intuitive and ergonomic layout of system controls
SPECIFICATIONS

Chuck Stage X-Y Movement
- **Travel range**: 200 mm x 200 mm
- **Resolution**: 0.5 μm
- **Repeatability**: ± 1.0 μm
- **Accuracy**: ± 1.5 μm
- **Planarity**: 8 μm

Chuck Stage Z Movement
- **Travel range for non-thermal chuck**: 25 mm
- **Travel range for thermal chuck**: 13 mm
- **Resolution**: 0.25 μm
- **Repeatability**: ± 1.0 μm

Theta Movement
- **Travel range**: ± 6.0°
- **Resolution**: 0.0001°

Programmable Microscope Movement
- **Travel range**: 50 mm x 50 mm
- **Resolution**: 0.25 μm
- **Repeatability**: ± 1.0 μm
- **Accuracy**: ± 2.5 μm
- **Access lift**: 130 mm

Manual Platen Movement (optional)
- **Drive type**: Compound knob
- **Coarse adjustment for non-thermal chuck**: 20 mm
- **Coarse adjustment for thermal chuck**: 10 mm
- **Contact / separation stroke**: 0.4 mm linear with 1 μm repeatability

Remote Interfaces
- **Graphical user interface**: Windows based

Utilities
- **PC**: RS232, LAN, GPIB
- **Power**: 115 / 230 V, 50 / 60 Hz, 600 W (maximum 150 VA)
- **Vacuum**: Less than 200 mbar abs
- **Compressed air**: 4 bar minimum

*Data, design and specification depend on individual process conditions and can vary according to equipment configurations. Not all specifications may be valid simultaneously.

PLATFORM

Velox Probe Station Control Software

The PA200 probe station is equipped with Velox probe station control software. The Velox software provides all features and benefits required for semi-automated operation of the probe system, such as:

- WaferMap with Z-profiling, sub-die stepping, binning and other useful features
- Integrated thermal control
- CellView using stitched image of the full device to enable on-screen navigation within the die layout when using eVue
- Configurable user interface and programmable buttons
PHYSICAL DIMENSIONS

Weight
133 kg (mechanics) / 13 kg (electronics)

Dimensions

APPLICATIONS

Testing MEMS with the PA200 in a light-tight environment.

Failure analysis with the PA200 and a laser cutter.

Automated multiport on-wafer measurements with the PA200 and VNA.