
00011111000

RF Series

High-performance RF Pyramid Probe® Card

> Overview

FormFactor's high-performance RF Pyramid Probe cards provide state-of-the-art signal integrity for wireless RF and microwave production test. Microstrip transmission lines maintain impedance control all the way to the bond pad. Patented ground and power planes with bypass capacitors provide resonance-free power supplies directly to the IC. In addition, the RF Pyramid Probe card delivers minimal pad damage and extremely long life, dramatically reducing the cost of ownership versus other RF production probe card offerings. Form Factor's innovative Pyramid Plus™ manufacturing process ensures a substantially lower cost of ownership, while delivering superior RF signal integrity in a single solution.

> Features / Benefits

Superior signal performance	 High-bandwidth RF transmission lines and guarded DC traces to probe tips guarantee performance and ensure low signal loss 				
	 Patented ground and power planes, with bypass capacitors, provide resonance-free stable power supplies directly to the DUTs 				
	 Consistent low contact resistance and low-inductance probe tips ensure accurate and repeatable high-speed digital and analog measurements 				
Mechanical robustness	 MicroScrub® technology provides consistent low contact resistance and inductance on a variety of pad materials and flip-chip bumps 				
	High-density photolithographically-placed contact probe tips are stable over lifetime of product.				
	 Low maintenance and permanent probe tip placement improve test cell uptime, reducing the cost of ownership compared to other probing technologies 				
Versatile and cost-effective	Lower maintenance overhead with less cleaning and no need for probe tip alignment				
Advanced membrane technology	FormFactor's industry-leading Pyramid Plus manufacturing process delivers higher performance, plus unique features that lower your cost of test				

> Mechanical Specifications

	P100-P800	P800-S	
Minimum pitch, peripheral	50 μm	67 μm	
Staggered pitch, peripheral	36 μm/72 μm	44 μm / 88 μm	
Minimum pitch, array	180 µm (dependent on maximum array size)	180 µm (dependent on maximum array size)	
Dimensional stability for lifetime	10 µm for single temperature	10 µm for single temperature	
Probe tip size Al, Cu (nominal)	12 µm	N/A	
Probe tip size Low K/PoAA (nominal)	18 µm	N/A	
Probe tip size Au, solder balls (nominal)	25 μm	25 μm	
Probe tip material Non-oxidizing nickel alloy		Non-oxidizing nickel alloy	
Temperature range	-50°C to 125°C	-50°C to 125°C	
Pad and bump materials	Al, Cu, Au, all types of solder balls	All types of solder balls	
Spring rate	1.67 g/mil	3.33 g/mil	
Edge sense	Optional	Not available	

> Electrical

Leakage	1.4 nA/V
Contact resistance	0.1 to 0.2 Ω (Al pads), 0.005 to 0.010 Ω (Au pads), 0.3 to 0.5 Ω (solder balls)
Maximum current / tip	1A (Au pads), 200 mA (Al pads, Cu pads and solder balls)
Maximum power 50 Ω microstrip	+33 dBm CW, +36 dBm pulsed
Max. power 50 Ω Co-Planar Waveguide (CPW)	+33 dBm CW, +39 dBm pulsed

➤ Power Supply Performance

Power trace impedance	10 Ω
Power supply non-resonant	up to 10 GHz
Inductance to first capacitor	0.2 nH
Maximum current standard power trace	1A
Maximum current per power supply	10 A

➤ Signal Trace Performance

Standard	
Signal line impedance	50Ω nominal
Ground inductance (typical)	0.04 nH
Return loss (S11) to coax	>10 dB @ specified bandwidth
Input reflection	± 80 mrho @ $50~\Omega$
Optional	
Range of trace impedances	2 Ω to 120 Ω ±20%
Differential impedance	$50~\Omega$, $100~\Omega$ and $200~\Omega$

> Signal Trace Length Matching

Typical signal	No match
Optimized signal (custom layout)	±1.5 ps (3 ps window)

> Series Path Resistance (Typical)

	P100	P300	P400	P500	P800/P800-S
DC resistance	1Ω	1Ω	1.6 Ω	2.5 Ω	2.5 Ω
Microstrip	1.2 Ω	1.2 Ω	2 Ω	3 Ω	3 Ω
CPW	0.8 Ω	0.8 Ω	1Ω	1.2 Ω	1.2 Ω

> Typical Isolation Measurements

Filter and switch	2 GHz	50 dB to 70 dB
High pin count	10 GHz	50 dB
Telecom	20 GHz	45 dB

> Matching Network Examples

	Output Impedance	Components	Correlation to Package	
Power amplifiers	2 Ω to 8 Ω	125 ps from DUT	±0.5 dB	
Wireless RF	100 Ω to 120 Ω differential	Balun on PCB	±1 dB	

> Component on Membrane

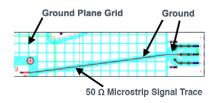
Package type	SMT
Sizes	01005, 0201, 0402, 0603, 0805

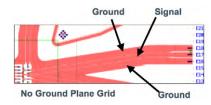
> Components Defined Within Membrane

Inductors	0.3 nH to1 nH (±0.3 nH)
Inductors	1 nH to 10 nH (±30 %)
Trimmed inductors	0.3 nH to 10 nH (±0.1 nH)
Capacitors	20 fF to 2 pF (±20 %)

> Pyrimid Core Options and Name Correlation

Frame Core		P100	P300	P400	P500	P800	P800-S
Previous frame core		RFC	SRF	MSI	LSI	VLSR	P800-S
I/O capacity		108	264	408	520	804	804
XY area (mm)		4.1 × 4.1	4.1 × 4.1	9.6 x 9.6	24 x 24	38 x 11	38.4 x 12.5
Components on core		32	32	40	100	120	120
Depth* from tester	Shallow			6.096	6.096	6.096	
side, mm (in.)				(0.240)	(0.240)	(0.240)	
	Standard	4.521	4.521	6.985	8.712	8.712	8.712
		(0.178)	(0.178)	(0.275)	(0.280)	(0.280)	(0.280)
	Extra	5.334	5.334	8.712	8.712	8.712	8.712
		(0.210)	(0.210)	(0.343)	(0.343)	(0.343)	(0.343)
	Deep	6.223	6.223	10.287	10.287	10.287	10.287
		(0.245)	(0.245)	(0.405)	(0.405)	(0.405)	(0.405)
	440			11.176		11.176	11.176
				(0.440)		(0.440)	(0.440)

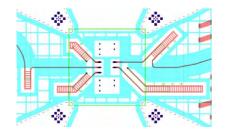

Depth variation is \pm 0.30 mm (\pm 0.012") from one design to another, and repeatable to \pm 0.10 mm (\pm 0.004") within the same design.


> RF-Class Bandwidth and Risetime Performance

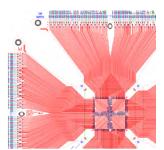
Transmission line ————			Frame Core Bandwidth and Rise Time ————————————————————————————————————				
Membrane	РСВ	Connector	P100	P300	P400	P500	P800/P800-S
Microstrip	Microstrip	Pogo pad	2 GHz 200 ps	2 GHz 200 ps	2 GHz 200 ps	2 GHz 200 ps	2 GHz 200 ps
Microstrip	Microstrip	PCB coaxial	7 GHz 50 ps	7 GHz 50 ps	7 GHz 50 ps	7 GHz 50 ps	7 GHz 50 ps
Microstrip	Coax	K or V	20 GHz 22 ps	20 GHz 22 ps	20 GHz 22 ps	15 GHz 25 ps	20 GHz 22 ps
CPW	Coax	K or V	20 GHz 15 ps	20 GHz 15 ps	20 GHz 17 ps	20 GHz 22 ps	20 GHz 17 ps

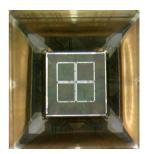
ightarrow 50 Ω Signal Trace Options

Microstrip	Coplanar Waveguide (CPW)			
Standard option	Optional			
Higher routing density/Smaller trace width	Lower routing density/Wider trace width (GSG)			
Best choice for isolation	Higher power/Lower path resistance			


> Emulating Lead Inductance

Some circuits require proper inductive loading


Effects cannot be calibrated out easily

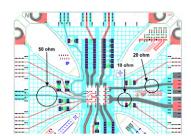

Embed inductance on all interface pins into probe card

Do not calibrate past lead inductance structures

➤ Multi-DUT Testing (Cell Phone Processor)

> Impedance Matching

Not all devices operate at 50 $\boldsymbol{\Omega}$


Matching to real impedance is needed for many tests

Incorporate into probe card

Many techniques: Lumped element

Quarter wave transmission line

Combination

© Copyright 2018 FormFactor, Inc. All rights reserved. FormFactor and the FormFactor logo are trademarks of FormFactor, Inc. All other trademarks are the property of their respective owners.

All information is subject to change without notice.

PyramidRF-DS-0418 Pyramid RF

